

LEAP THERAPEUTICSTM Patient Number / Patienten Sponsor Trial Code / Drug name: DKN-01 for inte DKN-01 zur intravenösen Potency / Dosisstärke: 200 Sponsor/CRO: Universität Langenbeckstr. 1 5510:

Leap Therapeutics | August 2019

DKN-01 Program Update

Leap Therapeutics | Forward Looking Statements

This presentation contains forward-looking statements that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation, including statements regarding our strategy, future operations, future financial position, future revenues, projected costs, prospects, plans and objectives of management, are forward-looking statements. The words "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "predict," "project," "target," "potential," "will," "would," "could," "continue," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based only on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, projections, anticipated events and trends, the economy and other future conditions. Because forwardlooking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that are difficult to predict and many of which are outside of our control. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. We assume no obligation to update any forwardlooking statements, except as required by applicable law.

Introduction

Dr. Cynthia Sirard, VP, Clinical Research & Development, Leap

DKK1 Biology and Preclinical Studies

Dr. Walter Newman, VP, Research, Leap

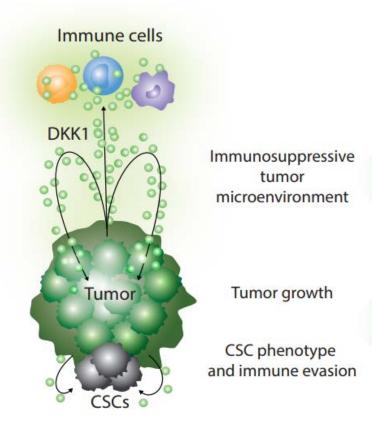
Esophagogastric Cancer

Dr. Samuel Klempner Assistant Professor, Massachusetts General Hospital Cancer Center and Harvard Medical School

Gynecologic Cancers

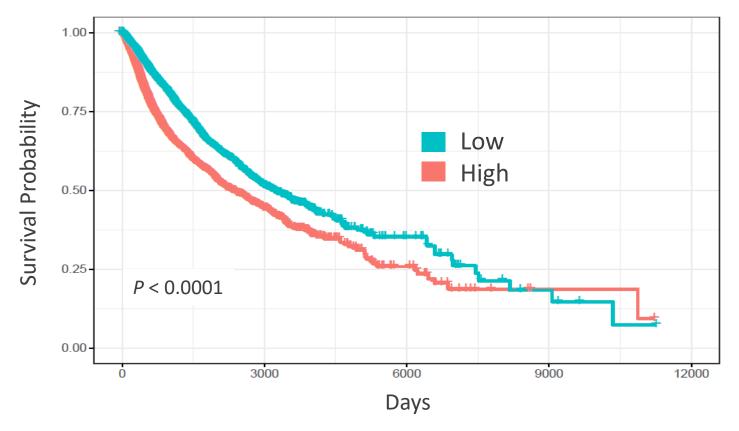
Dr. Rebecca Arend Assistant Professor and Associate Scientist, Gynecologic Oncology Clinic, UAB Comprehensive Cancer Center Experimental Therapeutics Program

Q&A



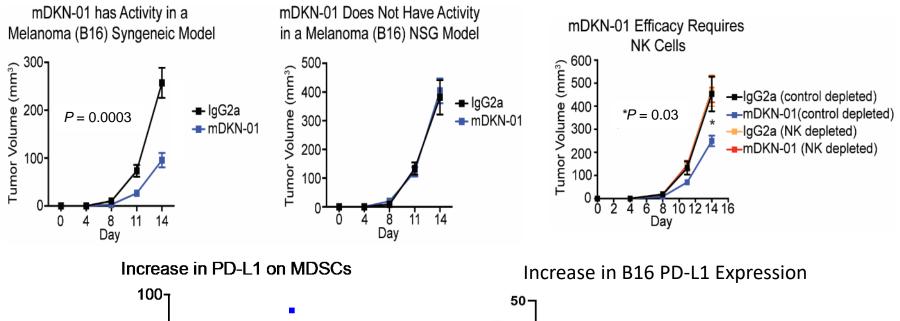
Biology and Preclinical Studies

Walter Newman Leap Therapeutics


DKK1 in Cancer

- Overexpression of DKK1 linked to poor prognosis
- Tumor cells secrete DKK1 promoting proliferation, metastasis, and angiogenesis
- DKK1 suppresses anti-tumor immune responses
- Neutralizing DKK1 activates an innate immune response in oncology models

High Levels of DKK1 Correlate with Shorter Overall Survival


OS for DKK1 High and Low Samples by Median (TCGA Pan-Cancer Dataset)

~2.5 year shorter OS in DKK1-high

Murine DKN-01 (mDKN-01) Has Immunotherapeutic Activity

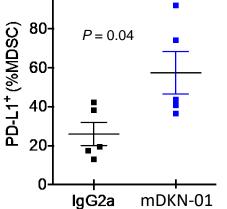
- mDKN-01 activity depends on a functioning immune system and NK cells
- mDKN-01 activity stimulates an increase in PD-L1 expression on MDSCs and tumors

CD45^{neg}PDL1+ (%)

40-

30-

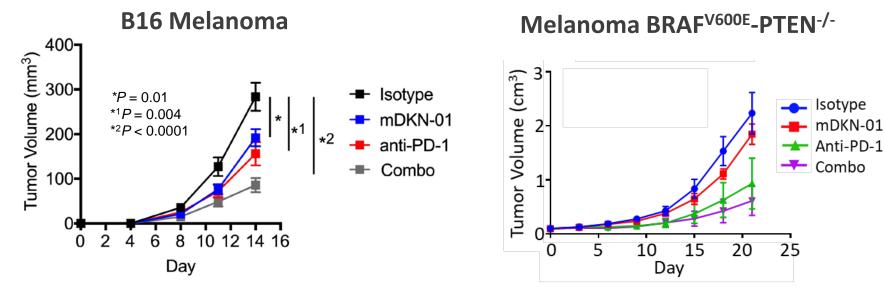
20-


10

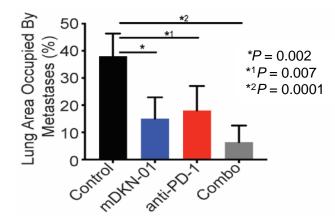
0

P = 0.1

lgG2a

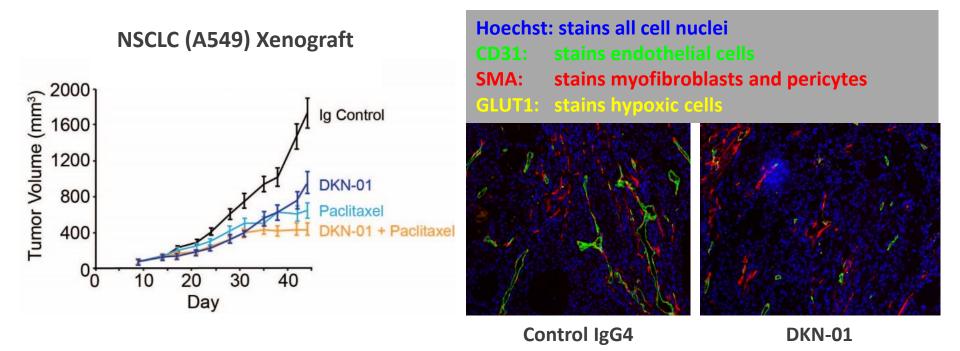

mDKN-01

7


mDKN-01 in Combination with an Anti-PD-1 Antibody

 Murine DKN-01 (mDKN-01) has additive activity with an anti-PD-1 antibody in two syngeneic melanoma models and one triple negative breast cancer model

Hanks et al. 2019

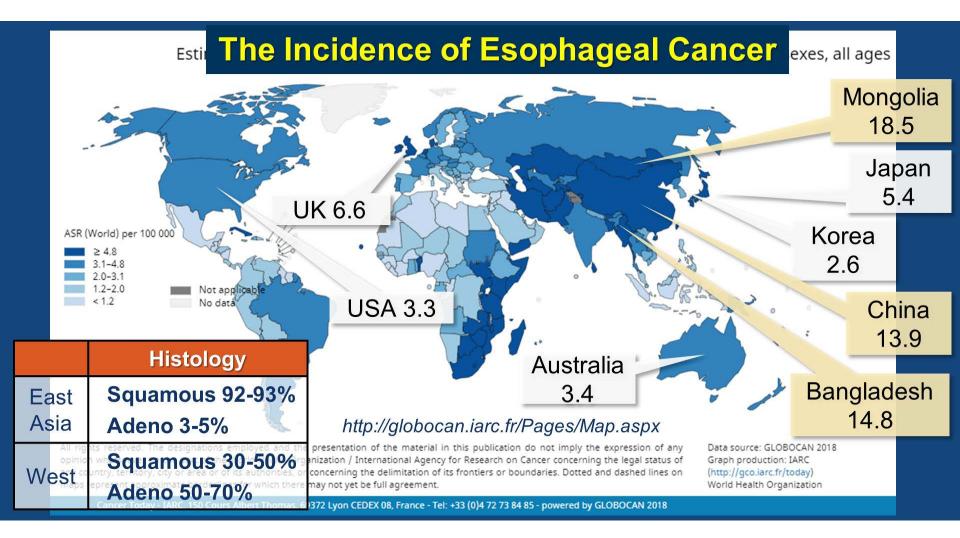

Lung Metastasis in 4T1 Breast Cancer

8

DKN-01 in Combination with Paclitaxel

- DKN-01 has monotherapy and additive efficacy in combination with paclitaxel
- DKN-01 reduces density of blood vessels in tumors

Esophagogastric Malignancies


Dr. Samuel Klempner Massachusetts General Hospital Cancer Center Harvard Medical School

Esophagogastric Cancer

New	Cases Each Year	r*	
	Esophageal Cancer	Gastric Cancer	
US	17,290	26,240	
Worldwide	572,034	1,033,701	

* SEER: US in 2018 GLOBOCAN: Global Cancer Statistics 2018

Esophageal Cancer is a Global Unmet Need

Source: WHO GLOBOCAN Database, 6/2019

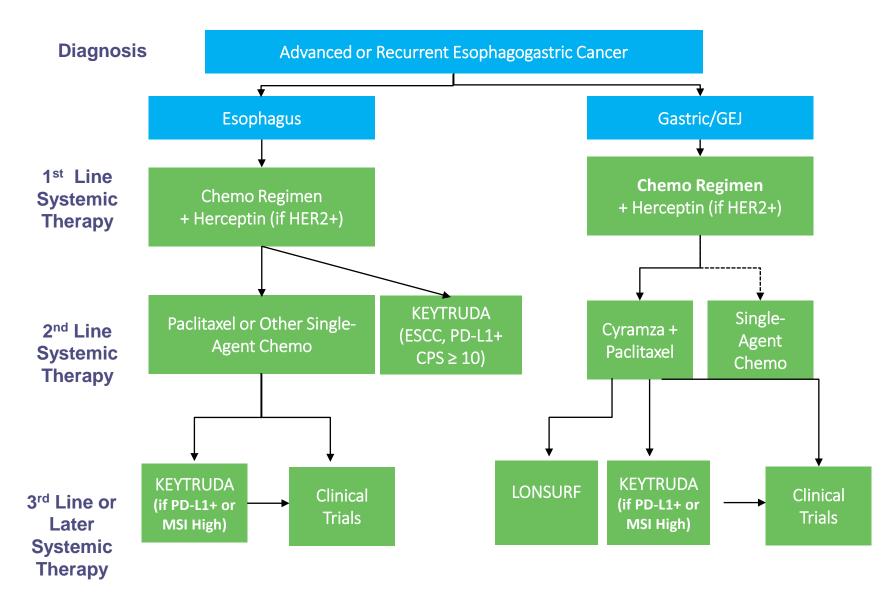
Gastric Cancer is a Global Problem

Source: WHO GLOBOCAN Database, 6/2019

Esophagogastric Cancer Grim Prognosis and Poor Quality of Life

- At diagnosis >50% percent of patients have advanced disease
- Limited treatment options available
- Standard of care has limited activity

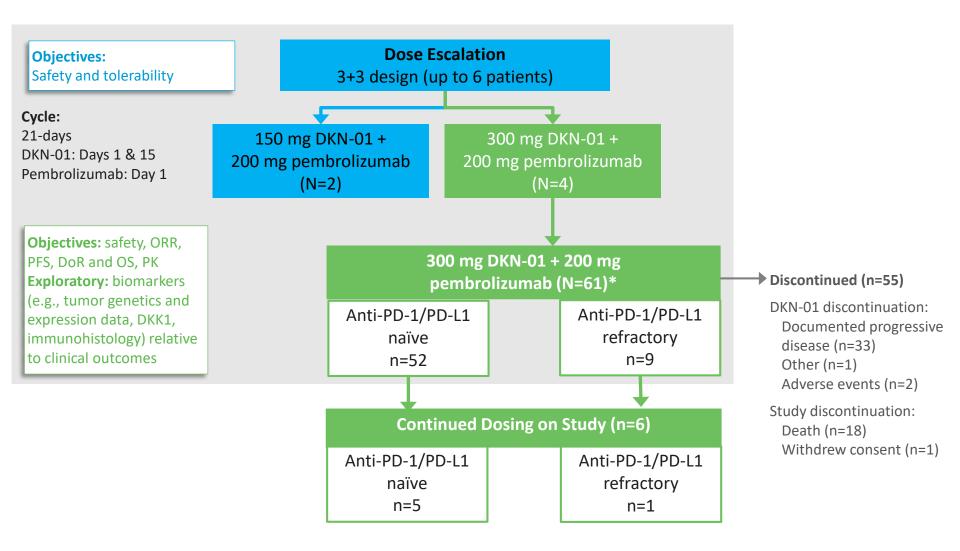
100 90 80 Percent Surviving 70 60 50 45.2% 40 30 23.6% 20 12.0% 10 4.8% 0 Localized Regional Distant Unknown Stage


5-Year Survival By Stage

Source: SEER

Challenges in Caring for Advanced EGC Patients

- Highly symptomatic disease complicates number of patients appropriate for clinical trials
- Nutritional Status: complicated by prior surgical treatment and/or tumor location.
- Several large studies suggest only 40% of US EGC patients receive second line therapy
- Inter and intra-tumoral heterogeneity limit success of small molecule targeted therapies and trastuzumab.


Treatment Paradigm for Esophagogastric Cancer

Benchmark Studies in Esophagogastric Cancer Patients Response Rates and Overall Survival Remain Low

	Sec	Third Line +	
	KN-181 Pembro mono (EA+ESCC)	KN-061 Pembro mono (GEJ/GC)	KN-059 Pembro mono (GEJ/GC)
Ν	314	296	259
ORR (%)	13.1	11.1	11.6
ORR in MSS Pts (%)	NR	9.3	9.0
PFS months (95% CI)	2.1 (2.1, 2.2)	1.5 (1.4, 1.6)	2.0 (2.0, 2.1)
OS months (95% CI)	7.1 (6.2, 8.1)	6.7 (5.4 <i>,</i> 8.9)	5.6 (4.3, 6.9)

KEYNOTE-731 Study Flow Diagram Esophagogastric Cancer – DKN-01/Pembrolizumab

DKK1-high Patients Live Longer

Esophagogastric Cancer – DKN-01/Pembrolizumab

- Heterogeneous, heavily pretreated esophagogastric population
- Patients with high tumoral DKK1 have improved outcomes
- DKK1-high GEJ/GC patients have 50% ORR, median PFS of 5.1 months (22.1 weeks) and OS of 7.3 months (31.6 weeks)
- PD-L1 CPS scores do not predict efficacy in GEJ/GC
- DKK1-high correlates with longer PFS independent of PD-L1 CPS
- DKK1-high has a stronger association to efficacy outcomes than number of prior therapies
- IO refractory GEJ/GC patients with DKK1-high tumors had a best response of SD, whereas those with DKK1-low tumors had PD

Baseline Demographics

Esophagogastric Cancer – DKN-01/Pembrolizumab

	150 mg DKN-01 300 mg DKN		L (+pembrolizumab)
	(+pembrolizumab)	Anti-PD-1/PD-L1 naïve	Anti-PD-1/PD-L1 refractory
Ν	2	52	9
Median Age (range)	68 (67 <i>,</i> 69)	64.5 (28, 81)	62 (40, 74)
Sex (Male)	1 (50.0)	49 (94.2)	6 (66.7)
ECOG PS			
0	_	13 (25.0)	-
1	2 (100)	39 (75.0)	9 (100)
Cancer			
Esophageal	1 (50.0)	18 (34.6)	4 (44.4)
Squamous Cell	_	4 (7.7)	1 (11.1)
Adenocarcinoma (AC)	1 (50.0)	14 (26.9)	3 (33.3)
Gastroesophageal Junction AC	1 (50.0)	27 (51.9)	5 (55.6)
Gastric AC	_	7 (13.5)	-
Time Since Diagnosis			
Median (range, mos)	51.9 (23.3, 80.5)	11.8 (2.5, 67.6)	24.0 (18.5, 42.4)
Stage at Diagnosis			
Stage I	_	2 (3.8)	_
Stage II	1 (50.0)	6 (11.5)	_
Stage III	_	5 (9.6)	2 (22.2)
Stage IV	1 (50.0)	39 (75.0)	7 (77.8)

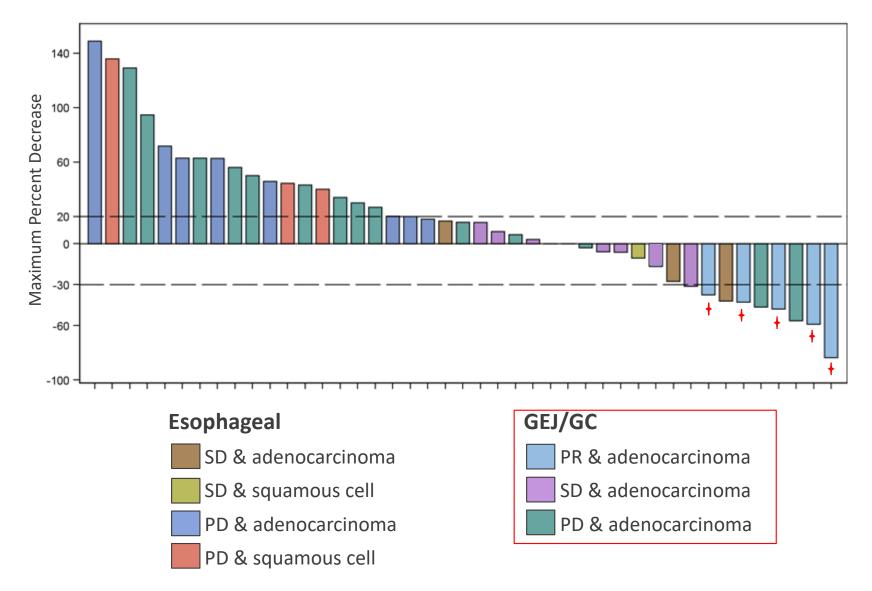
Prior Therapies Esophagogastric Cancer – DKN-01/Pembrolizumab

	150 mg DKN-01	300 mg DKN-01	1 (+pembrolizumab)		
	(+pembrolizumab)	Anti-PD-1/PD-L1 naïve	Anti-PD-1/PD-L1 refractory		
N	2	52	9		
Prior Therapy					
Median (range)	3 (3, 3)	2 (1, 5)	4 (2, 5)		
1	0	21 (40.4)	-		
≥2	2 (100)	31 (59.6)	9 (100)		
Type of Prior Therapy					
5-Fluorouracil	2 (100)	49 (94.2)	9 (100)		
Platinum	2 (100)	52 (100)	9 (100)		
Trastuzumab	0	13 (25.0)	2 (22.2)		
Taxane	1 (50.0)	31 (59.6)	8 (88.9)		
Ramucirumab	1 (50.0)	15 (28.8)	7 (77.8)		
Anti- PD-1/PD-L1	1 (50.0)	0	9 (100)		

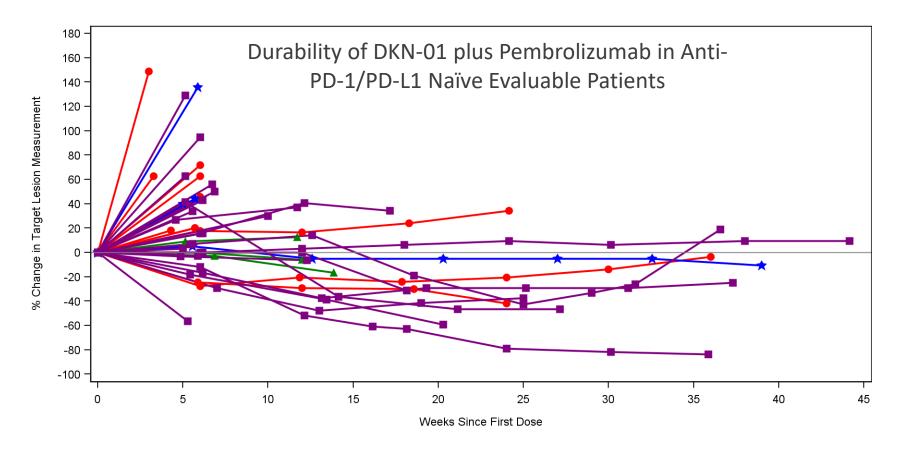
Baseline Biomarker Demographics Anti-PD-1/PD-L1 Naïve Esophagogastric Cancer

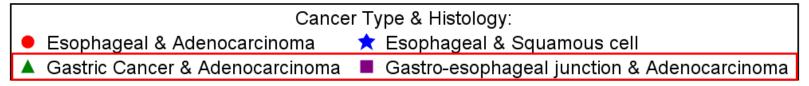
	Anti-PD-1/PD-L1 naïve (300 mg DKN-01)						
Cancer, n (%)	Overall n=52	ESO (EAC + ESCC) n=18	GEJ/GC n=34				
DKK1 RNAScope Tumor Cell Analysis	n=49	n=18	n=31				
Median H-Score	17.0	20.5	17.0				
PD-L1 Expression	n=45	n=18	n=27				
Median CPS	2.0	1.5	2.0				
Positive							
CPS 1- <10	18 (40.0)	5 (27.8)	13 (48.1)				
$CPS \ge 10$	12 (26.7)	5 (27.8)	7 (25.9)				
Negative	15 (33.3)	8 (44.4)	7 (25.9)				
Unknown	7	_	7				
Microsatellite Status	n=40	n=14	n=26				
MSS	40	14	26				
MSI-H	-	_	-				
Unknown	12	4	8				
Tumor Mutation Burden	n=24	n=8	n=16				
Median	5.0	3.4	5.5				
Low (1-10)	22 (91.7)	7 (87.5)	15 (93.8)				
Intermediate (≥10- <20)	2 (8.3)	1 (12.5)	1 (6.3)				
High (≥20)	_	_	-				
Unknown	28	10	18				

Summary of Adverse Events Esophagogastric Cancer – DKN-01/Pembrolizumab


Patients with Adverse Events (AE), n (%)	DKN-01 300 mg + Pembrolizumab (N=61)
Any TEAE	59 (96.7)
TEAE Related to DKN-01	39 (63.9)
TEAE Related to Pembrolizumab	34 (55.7)
G3+ TEAE	39 (63.9)
G3+ TEAE Related to DKN-01	15 (24.6)
G3+ TEAE Related to Pembrolizumab	15 (24.6)
Any TE SAE	25 (41.0)
TE SAE Related to DKN-01	5 (8.2)
TE SAE Related to Pembrolizumab	6 (9.8)
TEAE Leading to Discontinuation of DKN-01	3 (4.9)
TEAE Leading to Discontinuation of Pembrolizumab	4 (6.6)
TEAE Leading to Dose Modification of DKN-01	1 (1.6)
TEAE Thought to Represent Disease Progression	13 (21.3)
TEAE Indicated as DLT or DLT Equivalent	0
TEAE Leading to Death	1 (1.6)

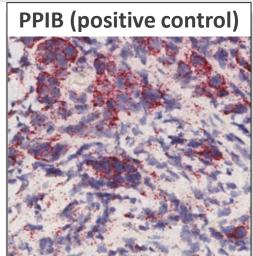
No Additive Toxicity Esophagogastric Cancer – DKN-01/Pembrolizumab

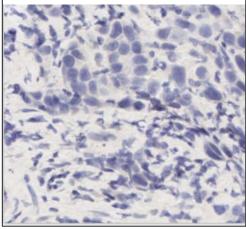

	DKN-01-Related Causality				Pembro-Related Causality			
	TEAE Ar	y Grade	TESAE		TEAE Any Grade		TE	SAE
	n	%	n	%	n	%	n	%
Any TEAE	39	64	5	8	34	56	6	10
≥ Grade 3 TEAE	15	25	-	_	15	25	_	_
DLT	-	_	-	_	-	_	_	-
Discontinuation due to TEAE	3	5	-	_	4	7	-	_
Preferred terms	#	%	#	%	#	%	#	%
Aspartate aminotransferase increased	9	15	0	0	9	15	0	0
Fatigue	10	16	0	0	9	15	0	0
Alanine aminotransferase Increased	5	8	0	0	5	8	1	2
Blood alkaline phosphatase increased	7	12	0	0	4	7	0	0
Decreased appetite	4	7	0	0	3	5	0	0
Dry skin	0	0	0	0	3	5	0	0
Hyperbilirubinaemia	2	3	0	0	3	5	0	0
Myalgia	2	3	0	0	3	5	0	0
Pruritus	0	0	0	0	3	5	0	0
Anaemia	6	10	0	0	2	3	0	0


All possibly related SAEs occurred in 1. Abdominal pain, dehydration, hypophosphataemia, orthostatic hypotension, pleural effusion, pneumonia and syncope were SAEs reported as at least possibly related to both DKN-01 and pembrolizumab. Alanine aminotransferase increased was an SAE reported for pembrolizumab only.

Greatest Clinical Benefit Seen in GEJ/GC Patients

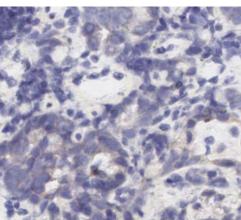
Greatest Clinical Benefit Seen in GEJ/GC Patients

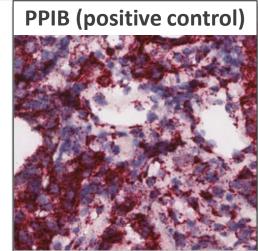


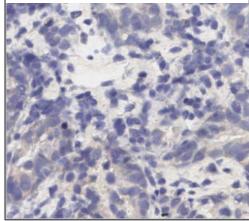

DKK1-RNAscope Assay

Patient with a partial response: DKK1 H-score = 163

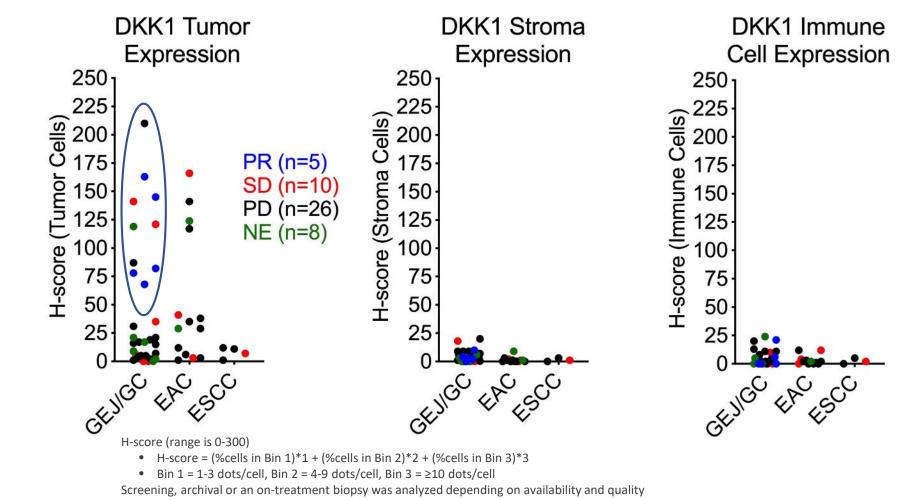
DKK1-high




dapB (negative control)


Patient with progressive disease: DKK1 H-score = 7

DKK1-low


dapB (negative control)

H-score calculated with QuPath software using 3 bins, score range is 0-300

DKK1 Tumor Expression Anti-PD-1/PD-L1 Naïve Esophagogastric Cancer

- Responding GEJ/GC patients have elevated levels of DKK1
- DKK1 is expressed in tumor cells

Patients dosed at 300 mg DKN-01

Better and More Durable Responses – DKK1-high Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

Primary Location	Total (n)	RE* (n)	PR (n)	SD (n)	PD (n)	NE (n)	RE* ORR (n, %)	DCR (n,%)
Overall	52	43	5	12	26	9	5 (11.7)	19 (39.5)
GEJ/GC	34	27	5	8	14	7	5 (18.5)	13 (48.1)
DKK1 RNAScope*	31							
DKK1-high	11	10	5	3	2	1	5 (50.0)	8 (80.0)
DKK1-low	20	15	0	3	12	5	0 (0.0)	3 (20.0)

-75

Best Overall Response

DKK1 H-Score (RNAScope)

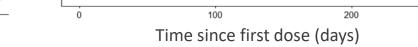
PD

PR

SD

Low

High


Best Overall Response

*DKK1-high ≥ upper tertile (35)

Best Percent Change from Baseline in Tumor Size

IO Naïve, 300 mg DKN-01 and GEJ/GC (Evaluable Set)

Percent Change in Target Lesion Measurements DKK1 + Low + High PD PR SD

Best % Change from Baseline in

Tumor Size

120

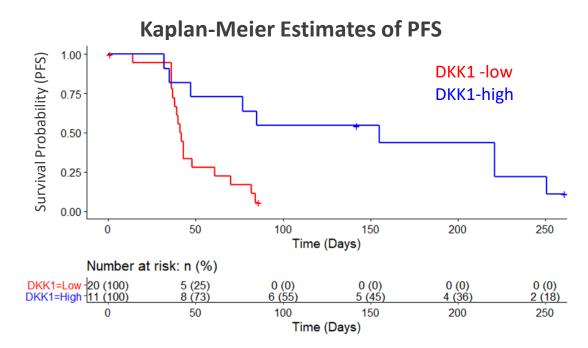
100

80

60

40

20 0

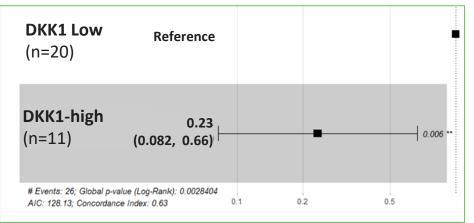

-20

-40

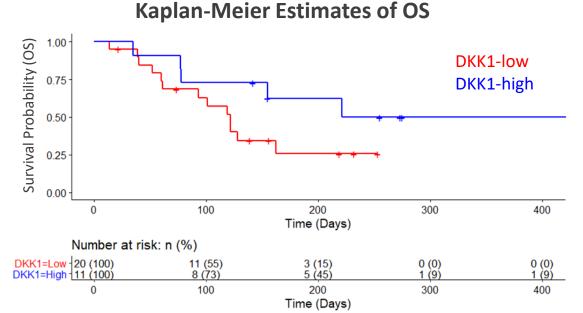
-60

-80 ·

Longer PFS Associated with DKK1-high Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

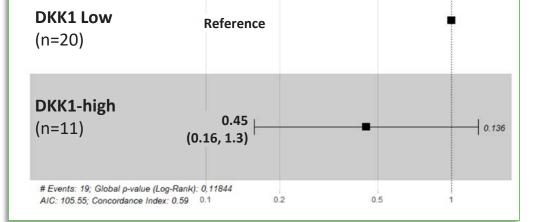


Progression Free Survival

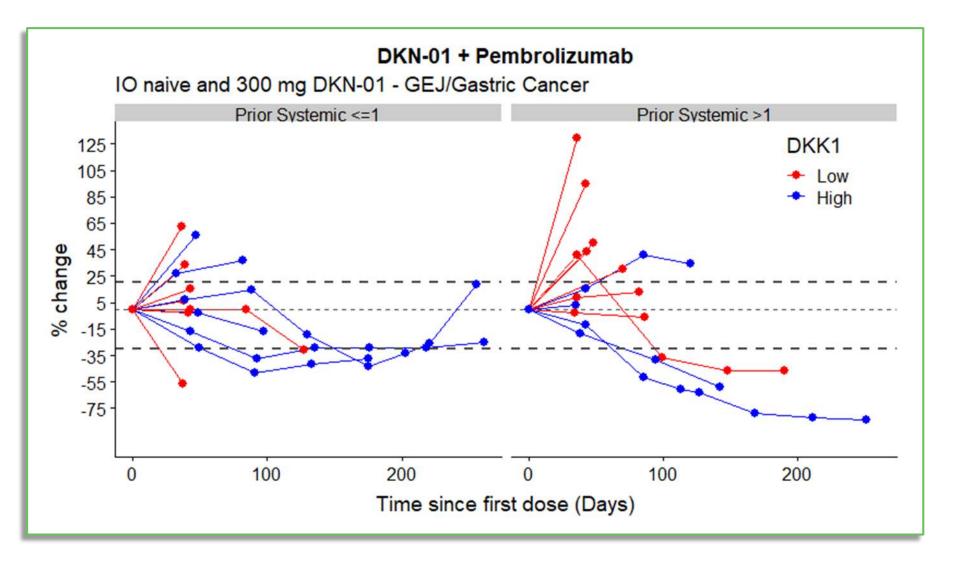

Primary Location	Total (n)	Median PFS (wks, 95%Cl)
Overall	52	6.0 (5.7, 10.0)
GEJ/GC	34	7.8 (5.7, 12.1)
DKK1 RNAScope*	31	
DKK1-high	11	22.1 (5.0, 35.9)
DKK1-low	20	5.9 (5.3, 8.3)

*DKK1-high ≥ upper tertile (35)

Hazard Ratio


Longer OS Trends with DKK1-high Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

Overall Survival

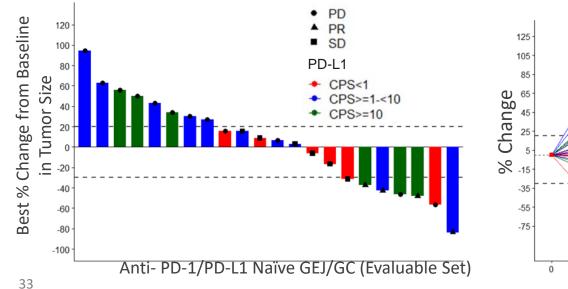

Hazard Ratio

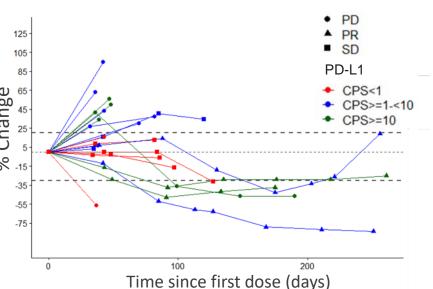
Total (n)	Median OS (wks, 95%Cl)
52	22.1 (14.1, 60.9)
34	22.1 (14.1, 60.9)
31	
11	31.6 (11.0, NR)
20	17.4 (8.7, 23.1)
	(n) 52 34 31 11

*DKK1-high ≥ upper tertile (35)

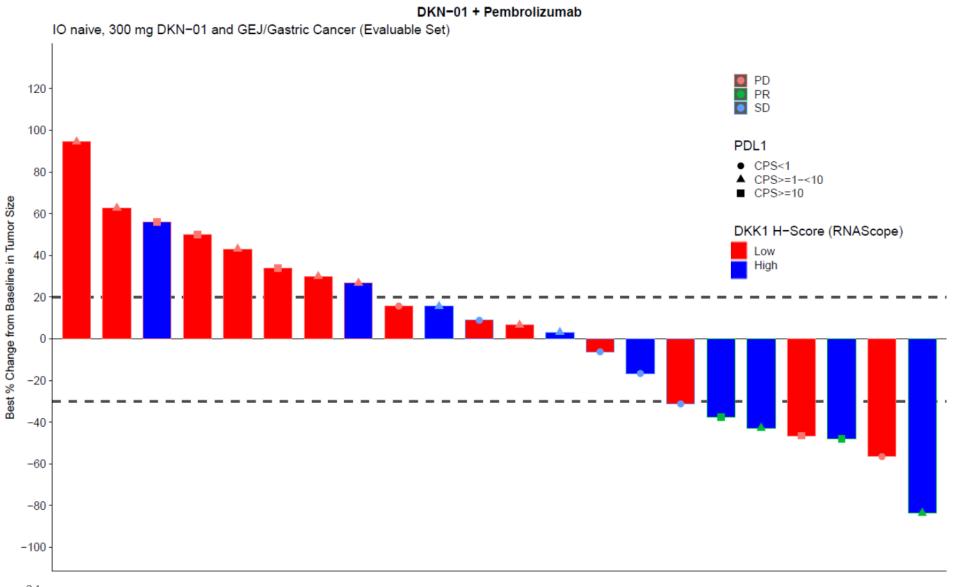
DKK1-high Patients Respond Despite Prior Therapies Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

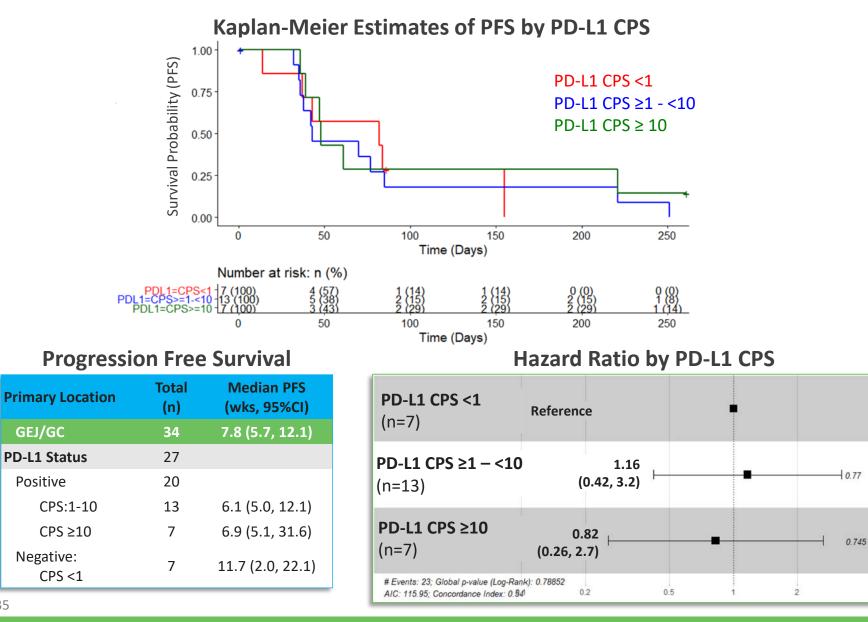
PD-L1 CPS Scores Do Not Predict Clinical Benefit Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup


Best Overall Response

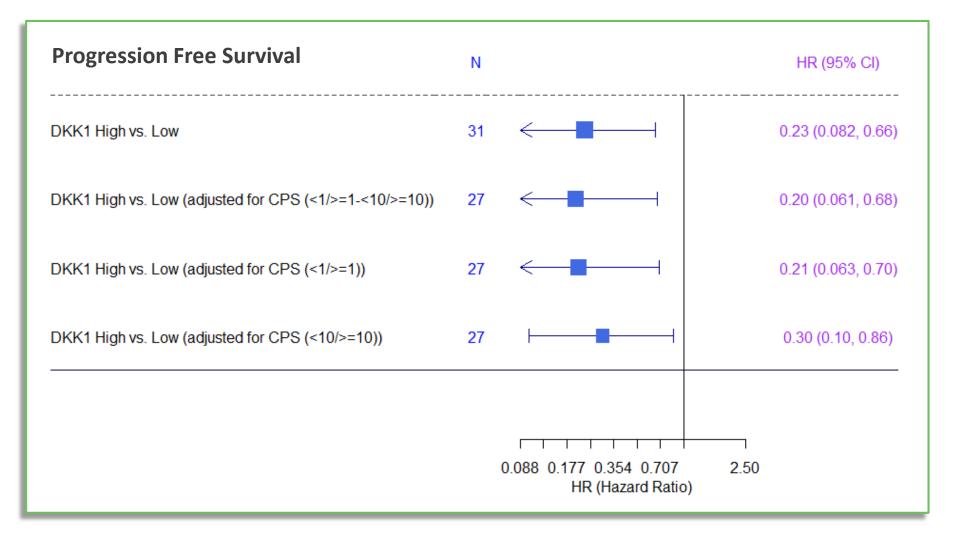

Primary Location	Total (n)	RE* (n)	PR (n)	SD (n)	PD (n)	NE (n)	RE* ORR (n, %)	DCR (n,%)
GEJ/GC	34	27	5*	8	14	7	5 (18.5)	13 (48.1)
PD-L1 Status	27							
Positive	20							
CPS:1-10	13	10	2	2	6	3	2 (20.0)	4 (40.0)
CPS ≥10	7	6	2	0	4	1	2 (33.3)	2 (33.3)
Negative: CPS <1	7	6	0	4	2	1	-	4 (66.7)

* One PR had unknown PD-L1 status


Best Percent Change from Baseline in Tumor Size

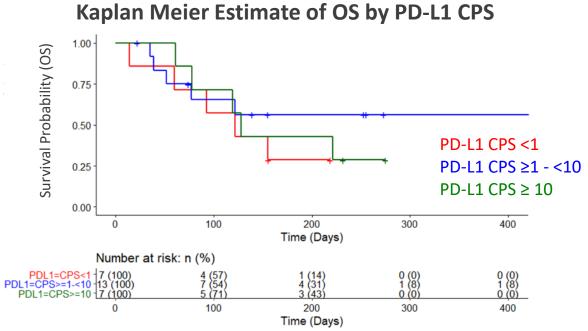


DKK1 and PD-L1 CPS – Impact on Best Change in Tumor Burden Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup



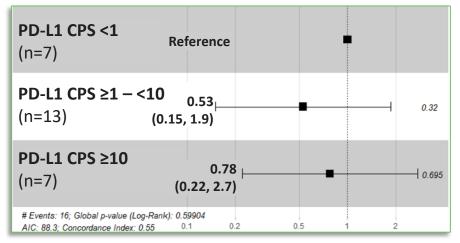
PD-L1 CPS Scores Not Associated with PFS

Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

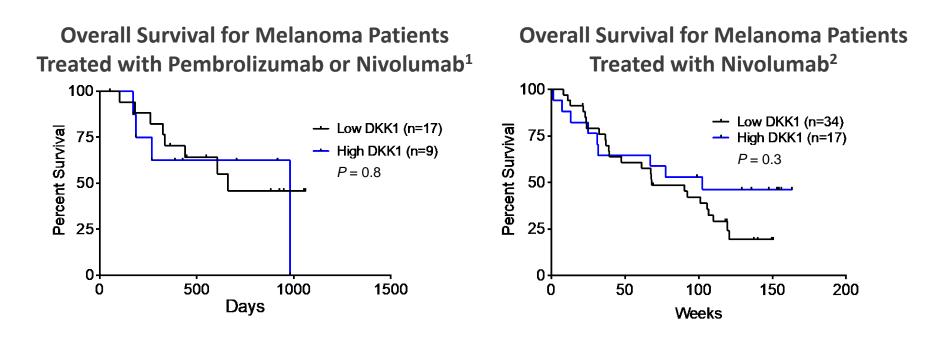


DKK1-High Correlates with Longer PFS Independent of PD-L1 CPS Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

PD-L1 CPS Not Associated with OS


Anti-PD-1/PD-L1 Naïve GEJ/GC Subgroup

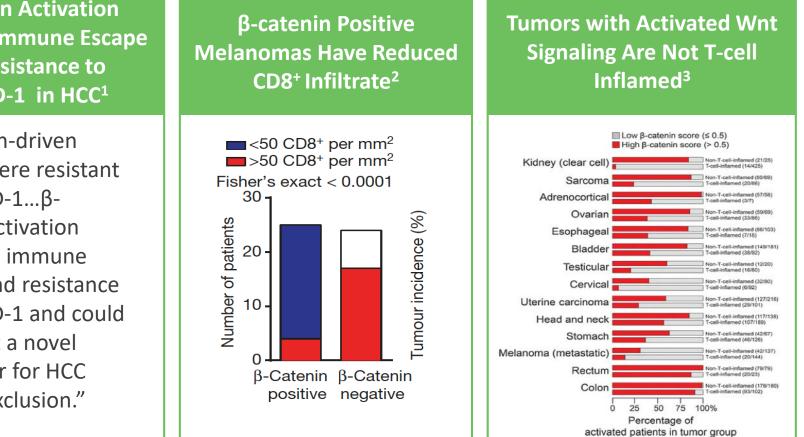
Overall Survival


Primary Location	Total (n)	OS (wks, 95%Cl)		
GEJ/GC	34	22.1 (14.1, 60.9)		
PD-L1 Status	27			
Positive	20			
CPS:1-10	13	>60.9 (5.6, NR)		
CPS ≥10	7	18.3 (8.7 <i>,</i> NR)		
Negative: CPS <1	7	17.4 (2.0, NR)		

Hazard Ratio by PD-L1 CPS

DKK1 Not Predictive of Clinical Outcomes with Anti-PD-1/PD-L1

- DKK1 tumor expression is not associated with overall survival for melanoma patients treated with pembrolizumab or nivolumab¹⁻²
- DKK1 expression is not significantly different in responding versus non responding urothelial patients treated with atezolizumab³

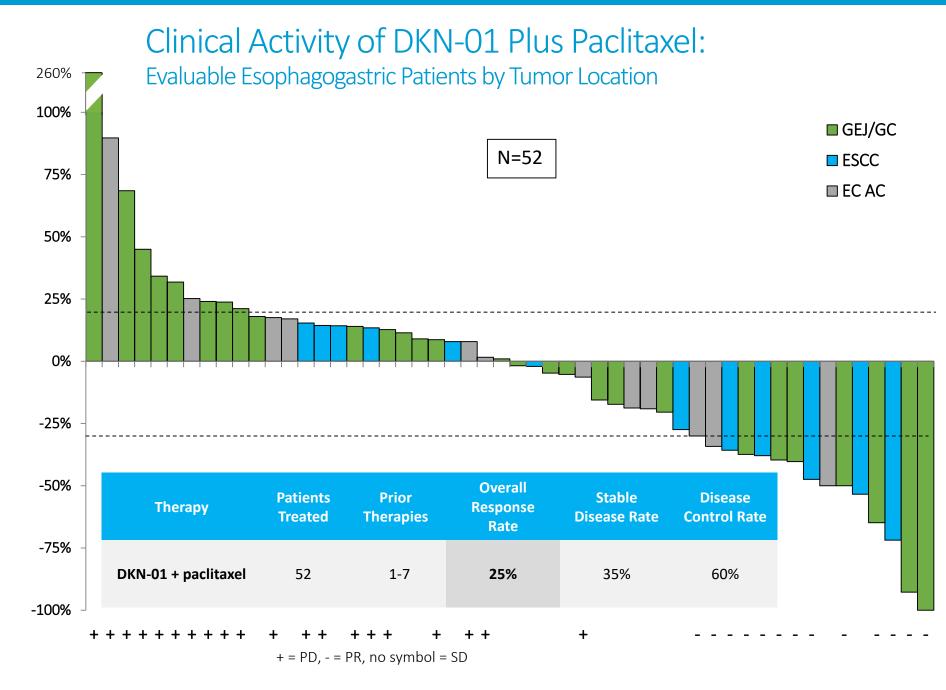


¹Hugo et al., Cell, 2016
²Riaz et al., Cell, 2017
³Mariathasan et al., Nature, 2018

Activation of Wnt/ β -catenin Signaling Linked to Immune Exclusion and Immune Checkpoint Resistance

β-catenin Activation **Promotes Immune Escape** and Resistance to Anti-PD-1 in HCC¹

"β-catenin-driven tumors were resistant to anti-PD-1...βcatenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion."


- 1. Ruiz de Galarreta M, et al. Cancer Discovery, 2019
- 2. Spranger et. al., Nature, 2015
- 3. Luke et. al., Clin Canc Res, 2019

DKN-01 Plus Paclitaxel Esophagogastric Study Design

		Stu	ıdy Desigr	n				DKN-01 150 mg + pac N=3	DKN-01 300 mg + pac N=56
					Tumor Assessment A	٩t	Age (median, range)	56 (47, 73)	62.5 (34, 82)
	DKN-01		DKN-01		End of Even		Male (n, %)	3 (100)	43 (76.8)
	+		+		Cycles		White	3 (100)	48 (85.7)
	Paclitaxel 80 mg/m ²	Paclitaxel 80 mg/m ²	Paclitaxel 80 mg/m ²	Paclitaxel 80 mg/m ²			Type of Cancer (n, %)		
Screening	↓ 	<u> </u>	Ļ	Ļ	Ļ	(+LTFU)	Esophageal Squamous	-	13 (23.2)
	Day 1	Day 8	Day 15	Day 22	Cycle 2	Cycle 3+	Esophageal AC	1 (33.3)	12 (21.4)
		γ]			GEJ AC	2 (66.7)	29 (51.8)
Bi	opsy	28-Day	Cycle	Bi	iopsy		Gastric	-	2 (3.6)
							Prior Therapy (median, range)	4 (2, 7)	2 (1, 6)
							Taxane (n, %)	3 (100)	27 (48.2)
							Ramucirumab (n, %)	1 (33.3)	7 (12.5)

Benchmark Studies in Esophagogastric Cancer Patients Response Rates and Overall Survival Remain Low

	Second Line						
	KN-181 Chemo mono (EA+ESCC)	KN-061 Pac mono (GEJ+GC)	RAINBOW Pac mono (GEJ+GC)	RAINBOW Ram + Pac (GEJ+GC)			
N	314	296	335	330			
ORR (%)	6.7	12.5	16.0	27.0			
DCR (%)	NR	NR	63.4	79.4			
PFS months (95% CI)	3.4 (2.8, 3.9)	4.1 (3.2–4.2)	2.9 (2.8, 3.0)	4.4 (4.2, 5.3)			
OS months (95% CI)	7.1 (6.3, 8.0)	8.3 (7.7, 8.8)	7.4 (6.3, 8.4)	9.6 (8.5, 10.8)			

DKN-01 Plus Paclitaxel Combination

Esophagogastric Malignancies

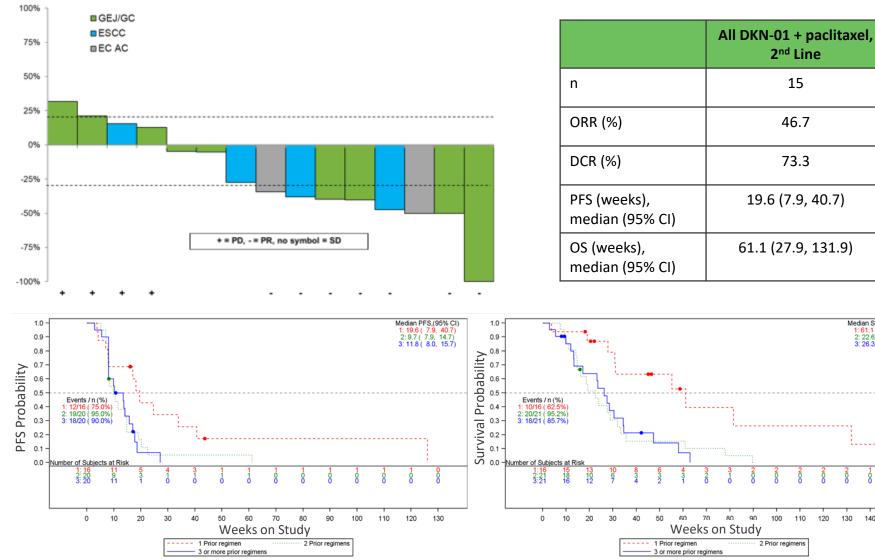
14.1 months (61.1 weeks) overall survival in second-line patients

Primary Location	Total (n)	PR (n)	SD (n)	PD (n)	NE* (n)	ND** (n)	Evaluable* ** n	ORR (n,%)	DCR (n,%)	PFS* (weeks, 95% CI)	OS (weeks, 95% Cl)
ESCC	13	4	4	4	-	1	12	4 (33.3)	8 (66.7)	13.7 (7.0, 19.6)	31.0 (14.1, 47.3)
Esophageal AC	13	2	4	6	-	1	12	2 (16.7)	6 (50.0)	9.7 (7.9, 19.0)	28.4 (11.1, 55.1)
GEJ/Gastric AC	32	7	10	11	2	2	28	7 (25.0)	17 (60.7)	13.4 (8.0, 18.6)	27.9 (19.0, 35.6)
Overall	58	13	18	21	2	4	52	13 (25.0)	31 (59.6)	13.4 (8.1, 17.0)	27.9 (22.6, 33.3)
Prior Therapy											
1	16	7	4	4	-	1	15	7 (46.7)	11 (73.3)	19.6 (7.9, 40.7)	61.1 (27.9, 131.9)
2	21	3	7	10	1	-	20	3 (15.0)	10 (50.0)	9.7 (7.9, 14.7)	22.6 (14.7, 31.9)
> 2	21	3	8	6	1	3	17	3 (17.6)	11 (64.7)	11.8 (8.0, 15.7)	26.3 (13.1, 34.4)
Prior Taxane Exposure											
Yes	31	4	11	14	-	2	29	4 (13.8)	15 (51.7)	10.1 (8.0, 14.7)	23.1 (16.1, 30.4)
No	27	9	7	7	2	2	23	9 (39.1)	16 (69.6)	15.9 (8.0, 19.1)	31.0 (27.4, 61.1)

* Subjects with non-measurable disease at baseline are excluded from PFS analysis

61 Weeks Median Overall Survival in Second Line Therapy Subset Esophagogastric Patients – DKN-01/Paclitaxel

2nd Line


15

46.7

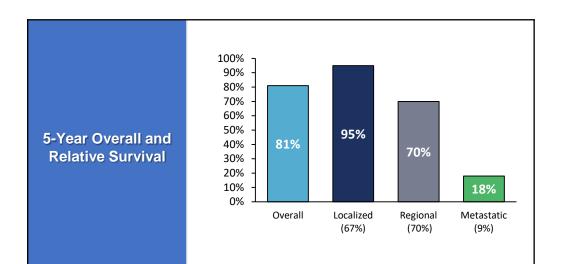
73.3

100 110 120 130 140 150

Median Survival (95% CI) 1: 61.1 (27.9, 131.9) 2: 22.6 (14.7, 31.9) 3: 26.3 (13.1, 34.4)

Conclusions

- Esophagogastric cancer patients have low response rates and survival outcomes and are in need of new targeted therapies
- DKN-01 plus paclitaxel combination exceeds the benchmark response rate and survival outcomes expected from paclitaxel alone
- DKN-01 plus pembrolizumab combination therapy extends survival and PFS in the DKK1-high subgroup of PD-1/PD-L1 naïve GEJ/GC patients independent of PD-L1 status
- Totality of DKN-01 data (monotherapy, chemo combination and PD-1 combination) creates a compelling profile and should be evaluated in randomized clinical trials
 - DKN-01 and paclitaxel in second-line or later esophageal cancer
 - DKN-01 and PD-1/PD-L1 antibody in DKK1-high gastric cancer
- Triplet combinations should be considered
 - DKN-01, PD-1/PD-L1 antibody and paclitaxel
 - DKN-01, ramucirumab and paclitaxel



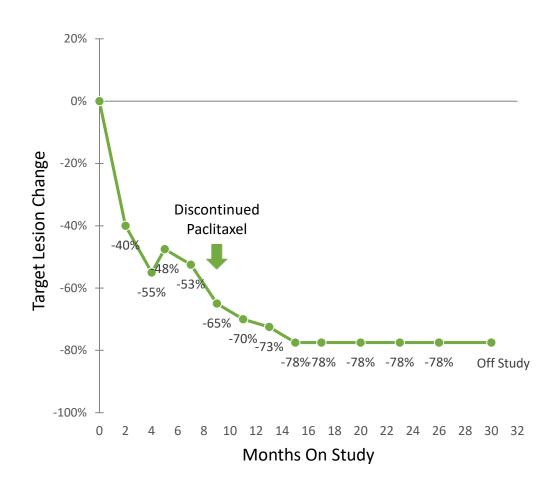
Gynecologic Malignancies

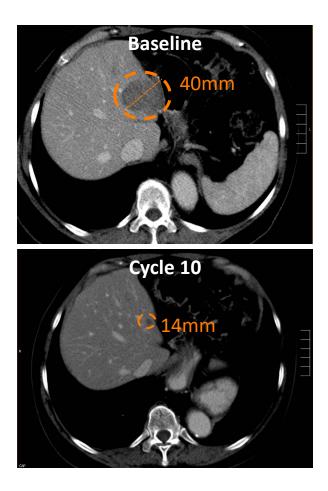
Dr. Rebecca Arend UAB Comprehensive Cancer Center

Endometrial Cancer

- Most common primary gynecological cancer in the western world, with approximately 62,000 cases estimated in the United States in 2018
- Fourth most common cancer in women in the US and incidence is increasing
- Clinical risk factors include estrogen-only hormone replacement, obesity, chronic anovulation, tamoxifen therapy, nulliparity, early menarche, and late menopause
- Clinically categorized into two subtypes:
 - Type I carcinomas, which account for most cases (70-80%), ae typically associated with a good prognosis, early stage at diagnosis, estrogen signaling, obesity, and low-grade endometrioid histology
 - Type II carcinomas are characterized by high stage at the time of diagnosis, non-endometrioid histology, and poor prognosis

Endometrial Cancer NCCN Guidelines for Patients

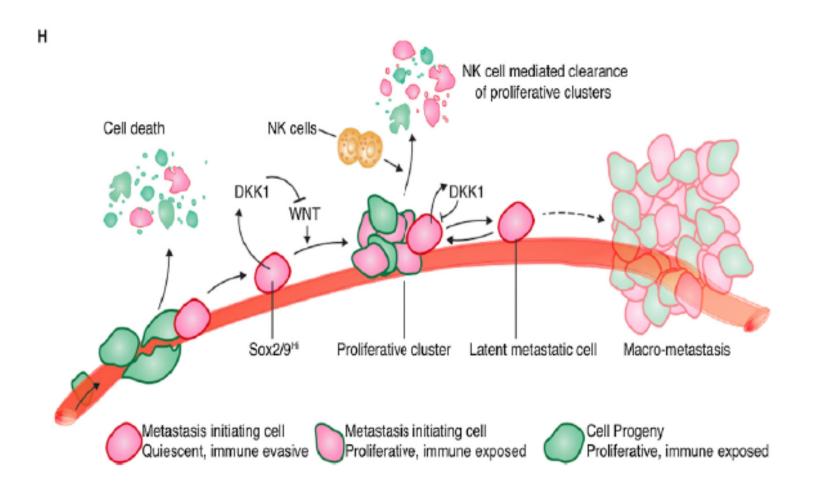

Result of imaging	Treatment
Cancer hasn't spread farther than the pelvis or abdomen	Total hysterectomy and bilateral salpingo-oophorectomy Before surgery, chemotherapy may be used to shrink the tumor.
Cancer has spread to distant areas of the body	You may have one or more of these treatments: •Chemotherapy •External radiation •Hormone therapy •Surgery to help with symptoms (not to cure the cancer)
Cancer has spread beyond the uterus and can't be removed with	OPTION 1: External radiation, with or without: • Internal radiation (brachytherapy) • Chemotherapy
surgery first	OPTION 2: Systemic therapy (chemotherapy and/ or hormone therapy)


Wnt Pathway Mutations are Frequent in Endometrial Cancer

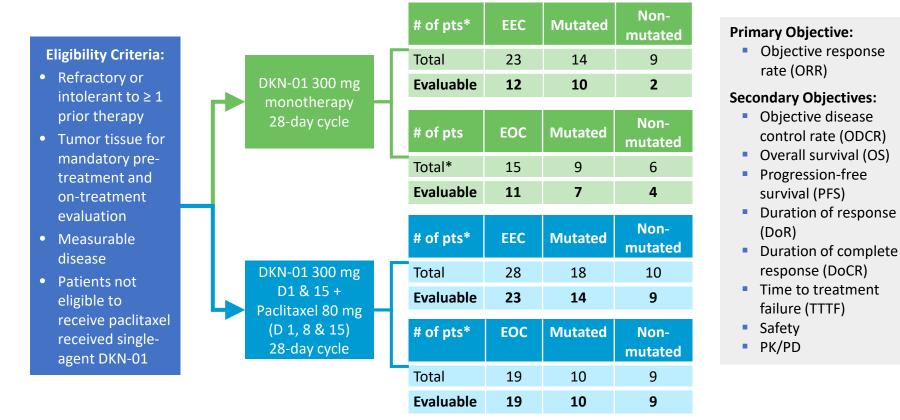
	Endometrioid	Serous	Carcinosarcoma	Clear cell
Bokhman subtype	T	I	I	II
TP53 mutation	Rare	>90%	60-90%	35%
PI3K alterations	PTEN mutation (75–85%) PIK3CA mutation (50–60%) PIK3R1 mutation (40–50%)	PTEN mutation (11%) PIK3CA amplification (45%) PIK3CA mutation (35%) PIK3R1 mutation (12%)	PTEN mutation (19%) PIK3CA mutation (35%) PIK3CA amplification (14%)	PTEN loss (80%) PIK3CA mutation (18%)
KRAS mutation	20-30%	3%	17%	0%
ERBB alterations	None	ERBB2 amplification (25–30%)	ERBB2 amplification (13–20%) ERBB3 amplification or mutation (13%)	ERBB2 mutation (12%) ERBB2 amplification (16%)
FGFR amplification or mutation	FGFR2 mutation (12%)	FGFR2 mutation (5%) Frequent FGFR1 and FGFR3 amplification	FGFR3 amplification (20%)	
Wnt/β-catenin	CTNNB1 mutation (25%)	CTNNB1 mutation (3%)		
Other	AR/D1A mutation (35-40%)	PPP2R1A mutation (20%) FBXW7 mutation (20% of undifferentiated endometrial carcinoma) LRPB1 deletion Frequent amplifications in MYC, CCNE1, and SOX17	PPP2R1A mutation (28%) FBXW7 mutation (35–40%) ARID1A mutation (25%) CCNE1 amplification (42%) SOX17 amplification (25%)	ARID1A (25%) TERT promoter mutations

www.thelancet.com Published online September 7, 2015 http://dx.doi.org/10.1016/S0140-6736(15)00130-0

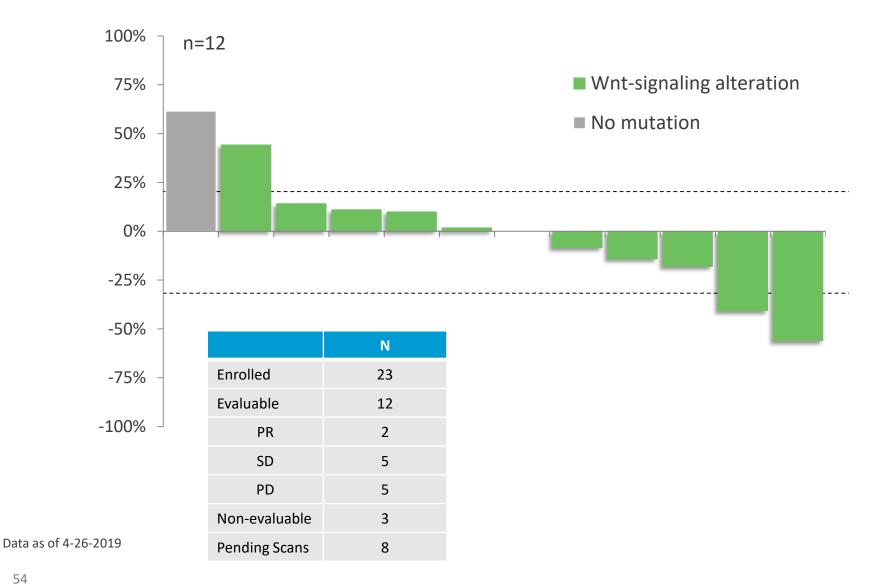
Durable DKN-01 Response GEJ AC Patient with *CTNNB1* Mutation



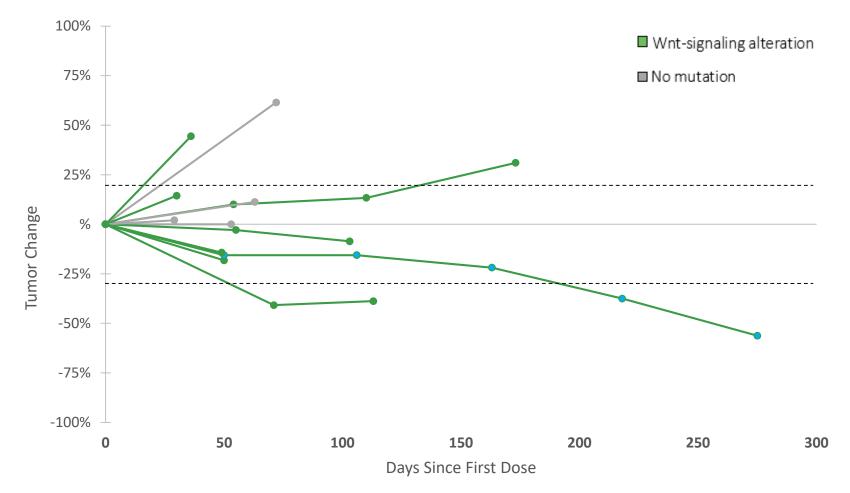
Rationale for Inhibiting DKK1 in Gynecologic Cancers


- DKK1 contributes to tumor growth in gynecologic cancers.
- Elevated levels of DKK1 have been observed in both the serum and tumors from patients with gynecologic cancers.
- Elevated DKK1 serum levels associated with later International Federation of Gynecology and Obstetrics (FIGO) stages for both cancers and lymphatic metastasis for cervical cancer.
- DKK1 expression correlated with worse clinical outcomes, such as advanced FIGO stage and overall survival.
- Nonclinical models have demonstrated that DKK1 promotes ovarian cancer cell invasion and that depletion of DKK1 had efficacy in a murine ovarian tumor reduction model.
- Malignancies with activated Wnt/β-catenin signaling produce higher levels of tumoral DKK1
- Activated Wnt/β-catenin signaling genetic mutations occur early in the oncogenic process and are associated with immune exclusion
- Patients with high tumoral DKK1 have improved outcomes and may serve as an enrichment strategy in future studies

DKK1 and Immune Evasion

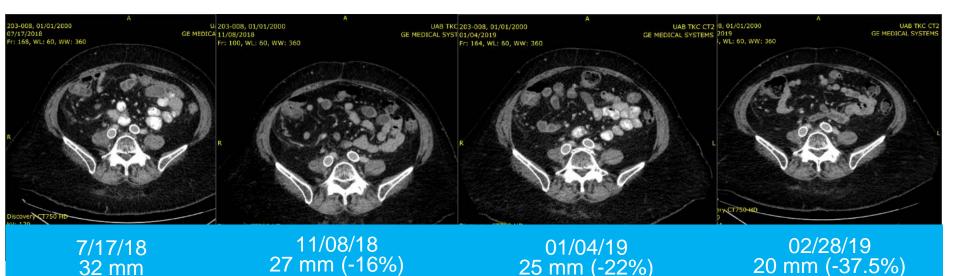


Gynecologic Study Design

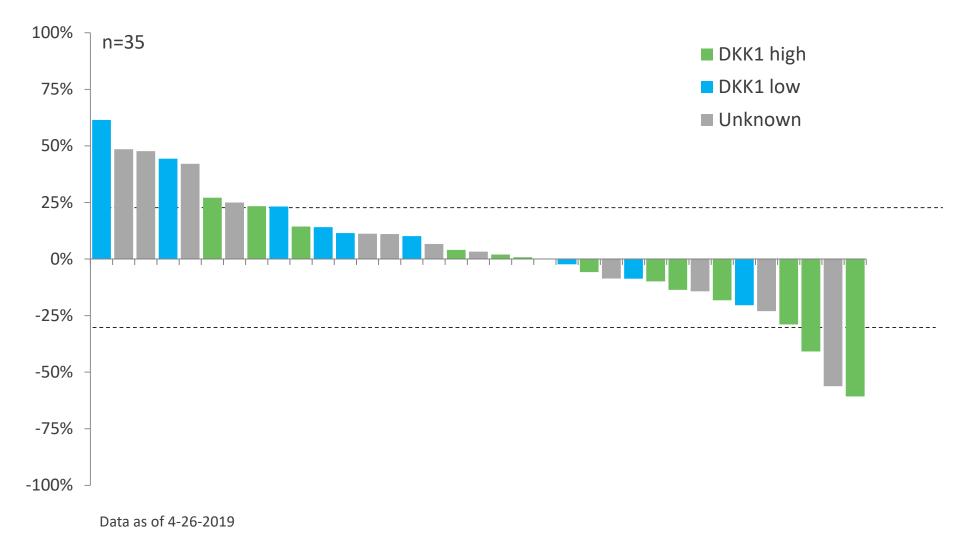

- Phase 2 basket study study enriched for Wnt signaling alterations explores genetic mutations and DKK1 expression as predictive biomarkers
- Evaluates DKN-01 as monotherapy or in combination with paclitaxel
- Patients with recurrent epithelial endometrial cancer (EEC) or recurrent platinumresistant/refractory epithelial ovarian cancer (EOC)

Response Associated With Wnt-signaling Genetic Alterations Endometrial Cancer - DKN-01 Monotherapy

Duration on Study is Associated With Wnt-signaling Endometrial Cancer - DKN-01 Monotherapy

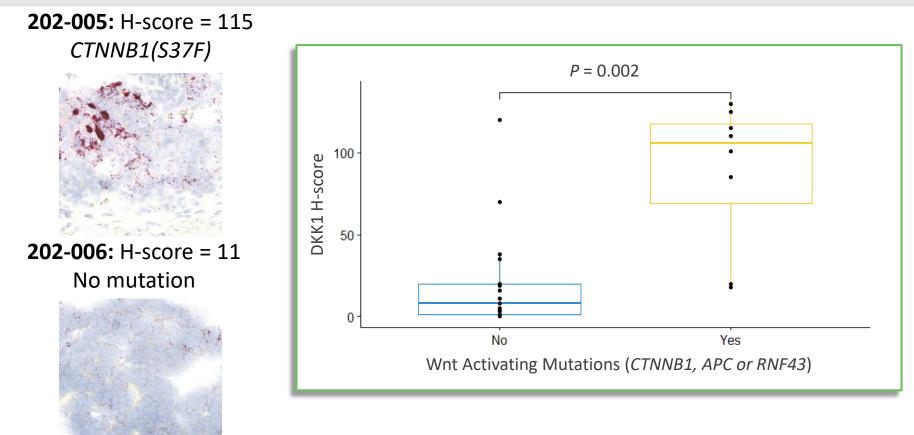


Patients with Wnt Pathway Mutations Respond to DKN-01 Monotherapy

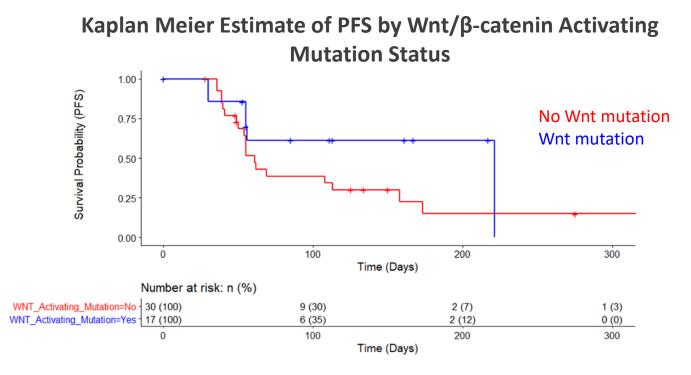

Data as of April 26, 2019.

DKN-01 Monotherapy PR in Endometrial Cancer

- 60-year-old with endometrial adenocarcinoma (ER/PR+, HER2-, MSI-H, TMB: 46.65, Wnt signaling alterations: ARID1A, MLL2) treated with surgical excision followed by local vaginal cuff brachytherapy with recurrence requiring local radiotherapy then systemic chemotherapy (carboplatin and paclitaxel) complicated by worsening neuropathy and thrombocytopenia
- Enrolled in July 2018, with continued deepening of tumor reduction with each scan, developed partial response (-37.5%) after 8 cycles, confirmed PR after 10 cycles (-56.2%) remains on study in Cycle 14, tolerating therapy well

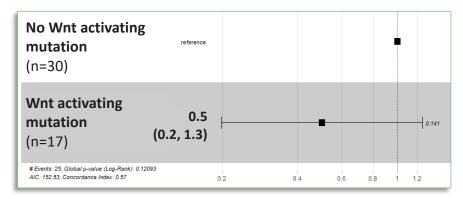


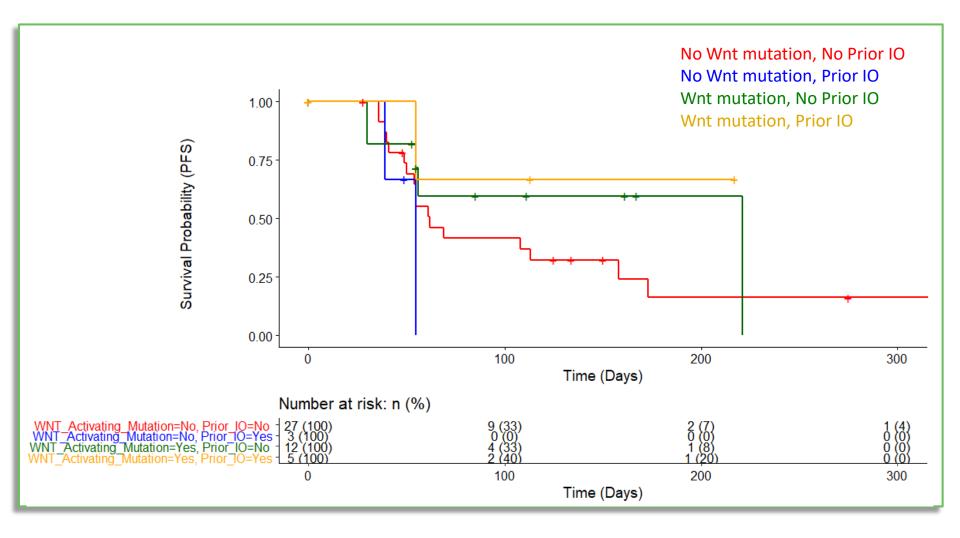
Responses Seen in Patients with DKK1-high Endometrial Cancer: DKN-01 Monotherapy or in Combination with Paclitaxel


Tumors with Wnt/β-Catenin Activating Mutations Express Higher DKK1 Endometrial Cancer Patients

 Genetic and DKK1 RNAscope data for 25 patients (8 patients have a Wnt signaling activating mutation*)

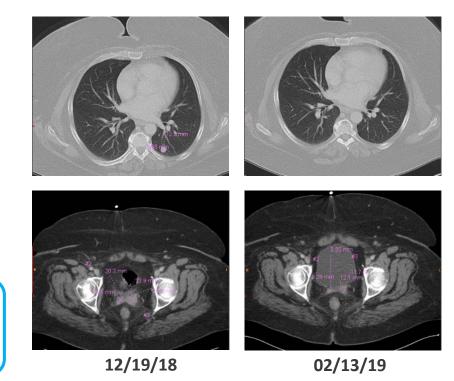
* β -catenin stabilizing, APC or RNF43 truncation


Trend Towards Longer PFS with Wnt/β-catenin Activating Mutations Endometrial Cancer Patients

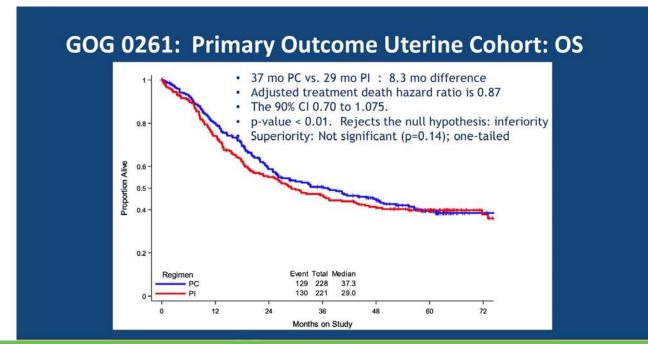

Progression Free Survival

EEC	N	Median PFS (wks, 95%Cl)
Wnt Activating Mutations		
No	30	8.7 (7.1, 16.1)
Yes (CTNNB1, APC or RNF43)	17	31.6 (7.9, NR)

Hazard Ratio


Wnt/β-catenin Activating Mutations and Prior IO Therapy: PFS Endometrial Cancer Patients

Best Response in Wnt/β-catenin Activating Mutations (CTNNB1 & APC)


Uterine Carcinosarcoma Patient with *CTNNB1* Mutation and Partial Response

- 46-year-old female
- Recurrent uterine carcinosarcoma
- Previously treated with neoadjuvant/adjuvant (carbo/paclitaxel), debulking surgery and one therapy for advanced recurrent disease (cisplatin/XRT)
- Received DKN-01 + paclitaxel therapy
- First scans reveal PR (-61%) with resolution of lung nodules known to be Wnt driven (*CTNNB1*)

Uterine Carcinosarcoma (Malignant Mixed Mullerian Tumor)

- Malignant uterine neoplasm comprised on carcinomatous and sarcomatous elements
- Accounts for < 5% of all uterine cancer</p>
- Aggressive, poor prognosis
 - 50% diagnosed with metastatic disease beyond the pelvis
 - 5-year survival of 9-22% for advance stage disease
- Poor response to chemotherapy

Uterine Carcinosarcoma: Further Study Warranted

- Four patients enrolled in original study groups
 - 3 patients treated with DKN-01 + paclitaxel
 - 1 patient treated with DKN-01 monotherapy
- Two patients with clinical benefit, both with CTNNB1 mutations
 - One PR (DKN-01 + paclitaxel)
 - One prolonged SD (> 12 months) (DKN-01 monotherapy)
- Three patients with DKK1-high tumors
- Study now enrolling 30 additional patients enriched for Wntsignaling alterations with higher dose of DKN-01 (600 mg)
 - 10 DKN-01 monotherapy
 - 20 DKN-01 + paclitaxel

Conclusions

- Endometrial cancer and carcinosarcoma patients are in need of new, more effective treatment options
- DKN-01 as a monotherapy and in combination with paclitaxel has generated partial responses and durable clinical benefit in heavily pre-treated patients
- Patients whose tumors have activating Wnt pathway mutations express higher levels of DKK1
- Patients whose tumors have Wnt pathway alterations experience greater clinical benefit
- DKN-01 (300 mg) is safe as a monotherapy or in combination with paclitaxel with no additive toxicities
- Updated data will be presented at IGCS in September 2019

DKN-01 Path Forward

- Totality of DKN-01 data (monotherapy, chemo combination and PD-1 combination) creates a compelling profile and should be evaluated further in esophagogastric cancer with randomized clinical trials
 - DKN-01 and paclitaxel in second-line or later esophageal cancer
 - DKN-01 and PD-1/PD-L1 antibody in DKK1-high gastric cancer
- Emerging DKN-01 data in endometrial cancer and carcinosarcoma creates an attractive opportunity
 - Patients whose tumors have activating Wnt pathway mutations express higher levels of DKK1 and have enhanced outcomes
 - Updated data will be presented at IGCS in September 2019
- Expand future indications and combinations through use of biomarker focused Investigator-Initiated and Cooperative Group Studies
 - Prostate Cancer NYU Langone
 - HCC University of Mainz
 - Tecentriq combination in EGC/BTC EORTC and Roche
- Business strategy to identify partner for late-stage development

Q&A